Reversible clustering of magnetic nanobiocatalysts for high-performance biocatalysis and easy catalyst recycling.

نویسندگان

  • Thao P N Ngo
  • Wei Zhang
  • Wen Wang
  • Zhi Li
چکیده

Reversible clusters of nanobiocatalysts are developed via non-covalent interaction among enzyme-bound iron oxide magnetic nanoparticles. Dissociation of the clusters by shaking during biotransformation enables high catalytic performance, and re-clustering by stopping shaking after reaction allows for easy magnetic separation. The novel concept is demonstrated with alcohol dehydrogenase RDR for the enantioselective reduction of 7-methoxy-2-tetralone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants

Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility...

متن کامل

Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst.

Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activit...

متن کامل

Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction

Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be ...

متن کامل

Recent Advances in Asymmetric Catalysis in Flow

Asymmetric catalysis in flow has been attracting much attention very recently because of the potential advantages over its batchwise counterpart, such as highthroughput screening and synthesis, easy automation with the integration of on-demand reaction analysis, little or no reaction workup, and potential long-term use of the catalysts in the case of heterogeneous catalysis. Homogeneous asymmet...

متن کامل

Boric Acid-Functionalized Fe3O4@SiO2 as a Novel Superparamagnetically Recoverable Nano Catalyst for Mukaiyama-Aldol Reaction

We have reported the fabrication of boric acid incorporated into surface of magnetite nanoparticles. The catalyst was characterized using spectroscopic, magnetic and thermal techniques (FT-IR, SEM, XRD, ICP, VSM and TGA). It catalyzed Mukaiyama aldol reaction of a ketene silyl acetal type nucleophile ((1-methoxy-2-methylprop-1-enyloxy) trimethylsilane), and various aldehydes (aromatic, aliphati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 48 38  شماره 

صفحات  -

تاریخ انتشار 2012